CV Therapy

Biomechanical Engineering

Paper

June 2, 2014

Bioengineered Stromal Cell- Derived Factor-1 alpha Analogue Delivered as an Angiogenic Therapy Significantly Restores Viscoelastic Material Properties of Infarcted Cardiac Muscle

Trubelja, A., MacArthur, J. W., Sarver, J. J., Cohen, J. E., Hung, G., Shudo, Y., Fairman, A. S., Patel, J., Edwards, B. B., Damrauer, S. M., Hiesinger, W., Atluri, P., Woo, Y. J.

Ischemic heart disease is a major health problem worldwide, and current therapies fail to address microrevascularization. Previously, our group demonstrated that the sustained release of novel engineered stromal cell-derived factor 1-a analogue (ESA) limits infarct spreading, collagen deposition, improves cardiac function by promoting angiogenesis in the region surrounding the infarct, and restores the tensile properties of infarcted myocardium. In this study, using a well-established rat model of ischemic cardiomyopathy, we describe a novel and innovative method for analyzing the viscoelastic properties of infarcted myocardium. Our results demonstrate that, compared with a saline control group, animals treated with ESA have significantly improved myocardial relaxation rates, while reducing the transition strain, leading to restoration of left ventricular mechanics.


© 2022 Hiesinger Labs