CV Imaging
Thoracic and Cardiovascular Surgery
Paper
June 3, 2021
Computational fluid dynamics simulations to predict false lumen enlargement after surgical repair of Type-A aortic dissection
Shad, R., Kong, S., Fong, R., Quach, N., Kasinpila, P., Bowles, C., Lee, A., Hiesinger, W.
We aim to use computational fluid dynamics to investigate the hemodynamic conditions that may predispose to false lumen enlargement in this patient population. Nine patients who received surgical repairs of their type-A aortic dissections between 2017-2018 were retrospectively identified. Multiple contrast-enhanced post-operative CT scans were used to construct 3D models of aortic geometries. Computational fluid dynamics simulations of the models were run on a high-performance computing cluster using SimVascular - an open source simulation package. Physiological pulsatile flow conditions (4.9 L/min) were used at the aortic true lumen inlet, and physiological vascular resistances were applied at the distal vascular ends. Exploratory analyses showed no correlation between rate of false lumen growth and blood pressure, immediate post-op aortic diameter, or the number of fenestrations (p = 0.2). 1-year post-operative CT scans showed a median (IQR) false lumen growth rate of 4.31 (3.66, 14.67) mm/year Median (Interquartile range) peak systolic, mid-diastolic, and late diastolic velocity magnitudes were 0.90 (1.40); 0.10 (0.16); and 0.06 (0.06) cm/s respectively. Spearman's ranked correlations between fenestration velocity and 1-year false lumen growth rates were found to be statistically significant: Velocity magnitude at peak systolic (p = 0.025; rho = 0.75), mid diastolic (p = 0.025; rho = 0.75) and late diastolic phases of the cardiac cycle (p = 0.006; rho = 0.85). We have shown that false lumen growth is strongly correlated to fenestration flow velocity, which has potential implications for post-operative surveillance and risk stratification.